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Talk outline 

• Statistical properties of rainfall

• Elements of a stochastic simulation framework 

• STEPS as an example 

• Conclusions



Statistical properties 
of rainfall

• Moments are a function of scale - 𝑟𝑙
𝑞
∼ Τ𝐿 𝑙 𝐾 𝑞 where L is the size of the 

observation domain, and 𝑟𝑙
𝑞

is the rain field averaged over scale 𝑙 and then raised to 
the power q. 

• Probability distribution is a function of scale - 𝑃𝑟 𝑟 > 𝜆𝛾 ∝ 𝜆−𝑐 𝛾 where 𝜆 = Τ𝐿 𝑙

• Power spectrum has a power law - 𝐸 𝑘 ∝ 𝑘−𝛽

• Temporal evolution is a power law function of scale  

• Spatial anisotropy is a function of scale

• Statistical properties of accumulations depend on Lagrangian evolution of the field 
and the advection, which also varies in space and time

• All of the above varies in space and time



Isotropic power spectral 
density of rainfall

𝐸 𝑘 ∝ 𝑘−𝛽

Mean isotropic power spectrum of 1 year of 6 min, 1 km radar data in Sydney

Note the change of slope in power spectrum at around 30 km 



Structure of Rainfall at Small Scales
• Below a critical 
scale (10-200 m (?), 
event-dependent), 
precipitation may be 
considered random
[my opinion, others 

disagree].

• Above that scale, 
precipitation 
structure appears to 
have an 
organization similar 
to that of the energy 
cascade of wind.

Data 
from 

FL, COData from 
Montreal

Fabry, McGill University, 2004



(Probable) Physical Origin of the Structure 
of Rainfall at Small Scales

Raindrops are not 
passive tracers:

• They have inertia;

• They have a size-
dependent fall speed.

These two effects cause 
a randomization of the 
position of raindrops at 
small scales that tends 
to destroy the structure 
built by wind.

Reflectivity

Velocity

Fabry, McGill University, 2004



Correlation Function
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Space –time anisotropy

Ht = space-time anisotropy exponent

If you double the space scale you 

increase the time scale by ~ 1.6

𝜏𝑙 ∝ 𝑙 1−𝐻𝑡



Vertical – horizontal 
anisotropy

Seed and Pegram: HAWR, 2001

Convective rain Widespread rain



Spatial anisotropy  

Niemi et al WRR 2014



Power Spectra as a 
function of meteorology

Seed, Pierce, Norman: Water Resources Research 2013 



Non-stationarity 
in time

Time series of b over a 256 km radar image during an event



Probability distribution as a 
function of location

Harris et al, JGR 1996



Non-stationarity in space 



Dynamic scaling

Foresti et al, 2014 



Elements of a stochastic 
space-time rainfall model

• Rainfall generator of random fields with at least a log normal distribution and scaling 
structure

• Temporal updater of the spatial field in Lagrangian coordinates, scale dependent

• Advection generator and updater – needs to be a field if working on a domain > 100 
km 

• Models to generate time series of system parameters (both within and between 
storms)
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Basis function
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Fig. Cascade levels derived from Rainfields rainfall for 14:00 hrs UTC 02 Sep 2016 

normalised to mean = 0 and variance = 1:  spatial scales of (a) 256 – 512 km; (b) 128 – 256 

km; (c) 64 – 128 km; (d) 32 – 64 km; (e) 16 – 32 km; (f) 8 – 16 km; (g) 4 – 8 km;  and (h) 2 –

4 km. 
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Cascade evolution



Cascade evolution



Cascade evolution



Cascade evolution



Cascade evolution



Multiplicative cascade:
space
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Multiplicative cascade: 
space & time
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Estimating the auto-
correlation parameters

• For each level in the cascade 

- Advect the level from the previous time forwards

- Calculate the correlation r between t-1 and t for each level 

- Use Yule-Walker equations to calculate  for each level
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Model for spatial 
scaling 

𝜎𝑘 = 𝜎0𝑞
𝑘𝐻𝑠

𝐻𝑠 is the scaling exponent, can be estimated using 𝛽 = 2 + 2𝐻𝑠
q is the scale ratio between cascade levels k+1 and k, < 1

k is the level in the cascade with scale 𝑙𝑘 = 𝑞𝑘𝑙0
cascade domain is 𝑙0 x 𝑙0



Conditional simulations

STEPS ensemble nowcasts

• Conditioned on radar data only
• 30 member ensemble

• Updated every 5 mins

• 2 hour lead time

• 5 min, 500 m resolution

• 250 km domain

• Adelaide, Melbourne, Sydney, Brisbane 

radars

• Conditioned on radar and NWP 

forecasts
• 30 member ensemble

• Updated every 10 mins

• 12 hour lead time

• 10 min, 1 km resolution

• 500 km domain

• 7 domains  



Downscale and 
blend NWP 

Seamless rainfall 

• Blend ACCESS-G & R

• 30 member ensemble

• Update 4x per day

• 5 day lead time

• 2 km, 1 hour resolution

• 1000 x 1000 km tiles

• 16 tiles over Australia

Daily rainfall accumulations – AWAP is the gauge analysis

that is used as the "truth" 



Seamless Rainfall products

Forecast hourly rainfall accumulation +20 hour

Composite ensemble members 0 & 6 



Multi-sensor national hourly rainfall 
ensembles

• Work done by Renzullo (CSIRO Land and Water), and Velasco  (Bureau of 
Meteorology) 

• Objective is to generate an ensemble of rainfall fields that are conditioned on radar, 
NWP, satellite rainfall in real time

• To be used as input for flood forecasting and other applications

• Spread in the ensemble represents the uncertainty in the blended product



Rain Gauges Weather Radar Satellite - NWP

Real-time gauges BoM Radars IMERG (TRMM - GPM)

ACCESS – R

GSMap-NOW (Himawari-8)
Rainfields

Ensemble multi-sensor QPE

Blending multi-source gridded rainfall

Renzullo and Velasco, 2017
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Blending multi-source gridded rainfall

A Scale-dependent blending approach was 
explored

- Multiplicative Cascade modelling of rainfall 
(e.g. STEPS, Seed et al.)

- Fourier transform spectral decomposition

- Each rainfall data source is decomposed into 
spatial components

- Noise generated with the same structural 
properties as rainfall analysis

- Noise contribution to the blend increase with 
increasing cascade level to reflect the 
uncertainty is estimation at the finer spatial 
scales

- Components are weighted according to how 
well they represent rainfall at the give 
cascade level

- Weights of each source at each scale are 
calculated using an objective method based 
on triple collocation (Caires and Sterl, 2003; 
McColl et al., 2014), where three independent 
observations are used to infer the error 
variances in each respectively.
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Semi-conditional 
continuous simulations

HiDRUS model developed by Raut at 

School of Earth Atmosphere Environment, 

Monash University

Model parameters are estimated from radar 

data

Ensembles used for urban infrastructure 

design and planning 

• 100 member ensemble

• 1 km, 6 min resolution

• 250 km domain

• 7-year period

Raut et al, 2018, JGR Atmospheres



Downscale ERA-1 reanalysis 1995 – 2004

• 100 member ensemble

• 1 km, 6 min resolution

• 250 km domain 

Semi-conditional 
continuous simulations

Raut, 2018, pers com, Monash University



Unconditional event 
simulations

Symbol Variable

R Mean areal rainfall over 256 km scale (mm/h)

σN Standard deviation at the 1 km scale (mm/h) 

Σ Vector of the standard deviation for each level (8 levels) in the cascade

ρ1 Vector of the lag 1 Lagrangian auto-correlations for each level in the 

cascade

ρ2 Vector of the lag 2 Lagrangian auto-correlations for each level in the 

cascade

E Advection east (km)

S Advection south (km)

β1 Slope of the spatial power spectrum for scales that are greater than 20 

km 

β2 Slope of the spatial power spectrum for scales that are less than 20 km 

Model variables

Used to generate ensembles

of design storms for Brisbane 

river catchment

• 10 member ensemble

• 1 km, 10 minute resolution

• 250 km domain

• 8 storms

Scaled each ensemble to match 

specific return periods over the 

catchment

Jordan et al, 2015, HWRS, Application of spatial and space-time patterns of design rainfall to design flood estimation 



Time series of model variables

b1(t) b2(t) s(t)

MAR(t)



Model parameters

Symbol Parameter Description

µR, σR, AR, HR Broken line for time series of mean areal rainfall in dBZ

µE, σE, AE, HE Broken line for time series of advection east

µS, σS, AS, HS Broken line for time series of advection south

av, bv, cv Quadratic function to calculate the field standard deviation

a1, b1, c1 Quadratic function to calculate β1

a2, b2, c2 Quadratic function to calculate β2

at, bt, ct Parameters to calculate ρ1, ρ2



Conclusions

• Rainfall has a very complex behaviour in space and time

• Bounded log-normal cascades can simulate a useful fraction of this behaviour

• STEPS has been used in a number of configurations to provide both conditional and 
unconditional simulations



Thank you

alan.seed@bom.gov.au


